Resumo:
OBJETIVO: Comparar as predições de tumor com padrão 4 de Gleason dominante ou de tumor com extensão extraprostática utilizando o sistema Prostate Imaging Reporting and Data System (PI-RADS v2), combinado ou não a espectroscopia por ressonância magnética (1H-ERM).
MATERIAIS E MÉTODOS: Trinta e nove pacientes submeteram-se a RM de 3 tesla com bobina endorretal, incluindo 1H-ERM, e prostatectomia. Dois radiologistas classificaram as principais lesões identificadas em cada caso utilizando PI-RADS v2 e escores de 1H-ERM. As análises estatísticas incluíram regressões logísticas, curvas receiver operating characteristic (ROC) e tabelas 2x2 para acurácia diagnóstica.
RESULTADOS: A sensibilidade e a especificidade da 1H-ERM e do PI-RADS v2 para a detecção de câncer de próstata de alto grau foram 85,7% (57,1%) e 92,9% (100%), e 56% (68%) e 24% (24%). A sensibilidade e a especificidade da 1H-ERM e do PI-RADS v2 para a detecção de extensão extraprostática (EEP) foram 64,0% (40%) e 20% (48%), e 50% (57,1%) e 71,4% (64,3%). As áreas das curvas ROC para a predição de câncer de alto grau foram 0,65 e 0,61 para PI-RADS v2 e 0,72 e 0,70 quando combinado com 1H-ERM (radiologistas 1 e 2, p = 0.04 e 0.21). Para a predição de EEP, as áreas das curvas ROC foram 0,54 e 0,60 para PI-RADS v2 e 0,55 e 0,61 quando combinado com 1H-ERM (p > 0.05).
CONCLUSÃO: É possível que a 1H-ERM melhore a predição de câncer de alto grau quando combinada ao PI-RADS v2, em particular para lesões que recebem um escore PI-RADS v2 4; entretanto, ela não afeta a predição de EEP.
Abstract:
OBJECTIVE: To compare the predictions of dominant Gleason pattern ≥ 4 or non-organ confined disease with Prostate Imaging Reporting and Data System (PI-RADS v2) with or without proton magnetic resonance spectroscopic imaging (1H-MRSI).
MATERIALS AND METHODS: Thirty-nine men underwent 3-tesla endorectal multiparametric MRI including 1H-MRSI and prostatectomy. Two radiologists assigned PI-RADS v2 and 1H-MRSI scores to index lesions. Statistical analyses used logistic regressions, receiver operating characteristic (ROC) curves, and 2x2 tables for diagnostic accuracies.
RESULTS: The sensitivity and specificity of 1H-MRSI and PI-RADS v2 for high-grade prostate cancer (PCa) were 85.7% (57.1%) and 92.9% (100%), and 56% (68.0%) and 24.0% (24.0%). The sensitivity and specificity of 1H-MRSI and PI-RADS v2 for extra-prostatic extension (EPE) were 64.0% (40%) and 20.0% (48%), and 50.0% (57.1%) and 71.4% (64.3%). The area under the ROC curves (AUC) for prediction of high-grade prostate cancer were 0.65 and 0.61 for PI-RADS v2 and 0.72 and 0.70 when combined with 1H-MRSI (readers 1 and 2, p = 0.04 and 0.21). For prediction of EPE the AUC were 0.54 and 0.60 for PI-RADS v2 and 0.55 and 0.61 when combined with 1H-MRSI (p > 0.05).
CONCLUSION: 1H-MRSI might improve the discrimination of high-grade prostate cancer when combined to PI-RADS v2, particularly for PI-RADS v2 score 4 lesions, but it does not affect the prediction of EPE.
|