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Abstract

Resumo

Systemic sclerosis (SSc) is a multifaceted autoimmune condition that leads to fibrosis in the skin and various internal organs, 
including the lungs. One of its most serious complications is interstitial lung disease (ILD), which has a profound impact on the prog-
nosis and on patient quality of life. High-resolution computed tomography (HRCT) plays a critical role by offering detailed structural 
information, whereas positron-emission tomography/CT (PET/CT) provides a deeper understanding of disease activity by combining 
metabolic and anatomical data. Radiomics expands on those modalities, extracting subtle imaging features undetectable by visual 
analysis, thereby enabling superior diagnostic accuracy, staging, and prognostic accuracy. This review explores the current applica-
tions of radiomics in SSc-ILD, highlighting breakthroughs such as the integration of artificial intelligence for early ILD prediction and 
risk stratification. Studies have demonstrated that radiomics is efficacious in overcoming traditional diagnostic limitations, enhanc-
ing precision in identifying the patterns of usual interstitial pneumonia and monitoring disease progression. When applied to PET/
CT, especially that using advanced tracers, radiomics can complement HRCT by identifying metabolic biomarkers of ILD activity, 
thus supporting personalized treatment strategies. Although radiomics holds significant transformative potential, its routine use in 
clinical practice still faces several obstacles, such as the need for standardization, validation, and consistency across institutions. 
Future efforts will be focused on combining radiomics with genetic and molecular data, developing artificial intelligence-driven lon-
gitudinal models, and adopting multimodal approaches to improve the management of SSc-ILD. These advances promise to drive a 
shift toward precision medicine, ultimately improving outcomes for patients with this complex disease.

Keywords: Radiomics; Scleroderma, systemic/diagnostic imaging; Lung diseases, interstitial; Connective tissue diseases/metabo-
lism; Precision medicine.

A esclerose sistêmica (ES) é uma condição autoimune multifatorial que resulta em fibrose cutânea e de diversos órgãos internos, 
incluindo os pulmões. Uma de suas complicações mais graves é a doença pulmonar intersticial (DPI), que impacta significativa-
mente o prognóstico e a qualidade de vida dos pacientes. A TCAR exerce papel fundamental ao fornecer informações anatômicas 
detalhadas, enquanto a PET/CT, por integrar dados metabólicos à informação anatômica, permite uma compreensão mais abran-
gente da atividade da doença. A radiômica expande as capacidades dessas modalidades ao extrair características de imagem 
sutis e imperceptíveis na análise visual convencional, proporcionando melhor acurácia diagnóstica, estratificação e potencial 
prognóstico ampliados. Esta revisão aborda as aplicações atuais da radiômica na DPI associada à ES, destacando avanços como 
a incorporação da inteligência artificial para predição precoce da DPI e estratificação de risco. Evidências crescentes demons-
tram a eficácia da radiômica em superar limitações diagnósticas tradicionais, aumentar a precisão na identificação de padrões 
de pneumonia intersticial usual e monitorar a progressão da doença. A radiômica aplicada à PET/CT, especialmente com o uso 
de traçadores avançados, pode complementar a TCAR ao fornecer biomarcadores metabólicos da atividade da DPI, contribuindo 
para estratégias terapêuticas personalizadas. Apesar do promissor potencial transformador da radiômica, sua adoção na prática 
clínica ainda enfrenta desafios, como a necessidade de padronização, validação e reprodutibilidade entre diferentes centros. Fu-
turos esforços concentram-se na integração da radiômica com dados genéticos e moleculares, no desenvolvimento de modelos 
longitudinais baseados em inteligência artificial e na adoção de abordagens multimodais, visando aprimorar o manejo da DPI as-
sociada à ES. Esses avanços sustentam a transição rumo à medicina de precisão, com perspectivas de melhoria nos desfechos 
clínicos dos pacientes acometidos por essa enfermidade complexa.

Unitermos: Radiômica; Escleroderma sistêmico/diagnóstico por imagem; Doenças pulmonares intersticiais; Doenças do tecido 
conjuntivo/metabolismo; Medicina de precisão.
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INTRODUCTION

Systemic sclerosis (SSc) is a complex autoimmune 
connective tissue disease (CTD) that is most prevalent in 
women between the third and fifth decade of life, char-
acterized by fibrosis of the skin and internal organs, such 
as the lungs, and associated vascular abnormalities(1,2). 
Cardiopulmonary disease is the leading cause of mortality 
in SSc; interstitial lung disease secondary to SSc (SSc-
ILD) is a significant complication, affecting over 50% of 
patients. The presentations of SSc-ILD range from sub-
clinical pulmonary involvement to progressive lung dis-
ease, resulting in severe respiratory complications that 
have a negative effect on patient prognosis and quality of 
life. Early detection of lung lesions is essential for effective 
management of SSc-ILD(3,4).

Histological patterns of chronic interstitial pneumo-
nia constitute the most frequently seen component of 
SSc-ILD and have a variable clinical course. One of the 
most common histopathological patterns observed in SSc-
ILD is that of usual interstitial pneumonia (UIP), second 
only to nonspecific interstitial pneumonia(2,3,5).

The diagnosis of SSc-ILD involves the use of pul-
monary function tests and morphological analysis of the 
lung parenchyma through the use of noninvasive, radia-
tion-based imaging techniques. Among such techniques, 
high-resolution computed tomography (HRCT) is particu-
larly important, although 18F-fluorodeoxyglucose positron-
emission tomography/CT (18F-FDG PET/CT) has emerged 
as a promising tool for assessing disease activity(1,6).

Although HRCT is pivotal in diagnosing, classify-
ing, and monitoring lung damage(4,7), the visual analysis 
of HRCT images is subjective and limited to morphologi-
cal assessment of the parenchyma, which limits its clini-
cal utility(8). Quantitative methods have been proposed to 
address that limitation, enabling HRCT to estimate the 
extent of fibrosis, predict the decline in lung function, as-
sess the risk of death, and detect treatment effects more 
effectively(8,9).

The hybrid imaging modality PET/CT combines the 
metabolic insights of PET—commonly using 18F-FDG as 
a tracer—with the anatomical details provided by CT. In 
SSc-ILD, PET/CT facilitates the visualization of metabolic 
activity correlated with inflammation and disease activity, 
offering metabolic data that complement the morphologi-
cal findings of HRCT(6). Newly developed tracers show 
promise for broadening the applications of PET/CT and 
combining its metabolic information with HRCT-derived 
anatomical details to provide deeper insights into patho-
logical processes(10,11).

Technological advances have introduced artificial in-
telligence (AI), which has become a transformative force 
in medical imaging, enhancing the analysis and interpre-
tation of HRCT and PET/CT scans(12,13). Radiomics—a 
technique that is a sophisticated extension of computer-
aided diagnostic systems—extracts and analyzes extensive 

quantitative features from medical images(14). This tech-
nique enables the detection of subtle lung tissue changes 
that are invisible to the human eye, making it a power-
ful tool for characterizing ILD in SSc(15). Radiomics has 
the potential to enhance diagnostic accuracy and identify 
novel imaging biomarkers, thereby improving clinical de-
cision-making, especially when integrated with AI tools(9). 
A framework illustrating the applications of radiomics in 
SSc-ILD is shown in Figure 1.

Despite the advances mentioned above, significant 
challenges remain in integrating radiomics and AI into 
routine clinical practice, including standardization, vali-
dation, and clearer interpretation of results. This review 
explores the current applications of radiomics in HRCT 
and PET/CT for SSc-ILD, highlighting recent advances 
and discussing future directions.

STUDY DESIGN

This study was designed as a comprehensive review, 
summarizing current research and advances in the applica-
tion of radiomics to HRCT and PET/CT images in patients 

Figure 1. Conceptual framework illustrating the current and potential applica-
tions of radiomics in SSc-ILD. HRCT- and PET/CT-based radiomics contribute 
to diagnostic refinement, prognostic assessment, and evaluation of treatment 
responses. Integration with AI enables personalized treatment planning.
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with ILD secondary to SSc. The review includes an as-
sessment of radiomics, its application in medical imaging, 
and the outcomes associated with its use. A comprehen-
sive search of the literature was conducted via electronic 
databases such as PubMed/Medline, Web of Science, and 
Embase, to identify recent, relevant studies published be-
tween January 2020 and November 2024. The starting 
point of 2020 was specifically chosen because it marks the 
emergence of studies involving radiomics in ILD, provid-
ing a foundational framework for this evolving field. The 
search strategy employed the keywords “Artificial Intelli-
gence”, “Tomography, X-Ray Computed”, “Scleroderma, 
Systemic”, “Lung Diseases”, “Positron Emission Tomog-
raphy-Computed Tomography”, and “Interstitial Lung 
Disease”. Additional references were gathered through 
manual searches of the bibliographies of selected articles.

The following inclusion criteria were applied: being 
an original study focusing on radiomics and AI application 
in the analysis of HRCT and PET/CT images in SSc-ILD; 
having been published in a peer-reviewed journal; present-
ing original research; and having been published in Eng-
lish. The article selection process is shown in Figure 2.

RESULTS

A comprehensive review of the literature highlighted 
significant advances in the application of radiomics to 
HRCT and the emerging, albeit still preliminary, applica-
tion of radiomics to PET/CT in SSc-ILD. Through a work-
flow that basically includes image preprocessing, segmen-
tation, feature extraction/selection, model building using 
AI algorithms, and model validation (Figure 3), radiomics 
has shown promise in extracting detailed quantitative im-
aging features beyond those obtained with traditional vi-
sual methods. This tool can potentially improve diagnostic 
accuracy, staging, and prognostic accuracy. In PET/CT, 
radiomics holds the potential for expanded use as further 
research develops.

In radiomic workflows, AI algorithms such as regres-
sion models, random forest (RF) models, and deep learn-
ing (DL) models play complementary roles throughout 
the stages of feature selection, modeling, and interpreta-
tion(16). Each of those models has specific advantages de-
pending on the data structure, dimensionality, and clinical 
objectives. The RF model, an ensemble of decision trees, 
is widely employed for variable selection and classifica-
tion because of its ability to handle numerous features 
and nonlinear interactions with robustness against over-
fitting, particularly in moderate-to-small datasets or when 
the number of predictors exceeds the number of observa-
tions(17). However, the RF model can become computa-
tionally intensive and less interpretable when applied to 
high-dimensional data without prior feature reduction(18).

The DL models, particularly convolutional neural 
networks, automatically extract hierarchical feature rep-
resentations from raw imaging data, making them highly 

Figure 2. Flowchart of the article selection process.

effective in image classification tasks and complex pattern 
recognition. These models are especially advantageous in 
recognizing subtle patterns undetectable by visual assess-
ment, excelling in contexts involving large image datasets 
and requiring high diagnostic accuracy(19). They excel in 
accurately identifying and classifying ILD subtypes, out-
performing conventional methods and radiologists, partic-
ularly when provided with large, high-quality datasets(20,21). 
Nevertheless, these models typically require large datasets 
and extensive computational resources, limiting their feasi-
bility in smaller cohorts and early-stage studies(22).

Regression models, including logistic and linear re-
gression models, are typically applied in the final stages 
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of radiomic analysis to construct quantitative predictive 
models. These models statistically relate selected radiomic 
features to specific clinical outcomes such as disease pro-
gression, treatment response, and risk stratification, by 
providing easily interpretable statistical associations(23). 
However, their limitation is the assumption of linearity 
and difficulty in modeling complex, nonlinear interactions 
frequently present in clinical datasets(18). The features and 
limitations of these algorithms are summarized in Table 1.

Studies have shown that HRCT radiomics is an effec-
tive tool for stratifying patients with SSc-ILD on the basis of 
disease severity. It also correlates well with functional and 
biological markers of fibrosis. We find it interesting that 
radiomics models have been shown to surpass traditional 
visual scoring methods in predicting UIP patterns and stag-
ing ILD related to CTDs(24). In addition, machine learning 
algorithms like RFs have proven to be highly accurate in 
detecting ILD early and monitoring its progression(25).

Radiomics applied to PET/CT utilizing 18F-FDG up-
take together with advanced tracers has been found to 

offer significant metabolic insights into inflammation 
and fibrotic activity. Semiquantitative, radiomics-based 
PET/CT models have shown potential in differentiating 
disease stages and evaluating treatment responses. Com-
bining metabolic and anatomical data has improved the 
evaluation of disease heterogeneity and severity(26,27).

The combination of radiomics and AI has improved 
diagnostic consistency and predictive modeling. The AI-
based approaches that utilize radiomics features have 
been found to have superior sensitivity and specificity in 
comparison with traditional diagnostic methods, offering 
a pathway to personalized treatment planning.

Despite the advances mentioned above, there are still 
challenges in standardizing radiomics workflows, ensuring 
reproducibility, and validating results across multicenter 
studies. These findings underscore the transformative po-
tential of radiomics in managing SSc-ILD, while empha-
sizing the importance of ongoing research and develop-
ment to support clinical implementation. Table 2 provides 
an overview of the articles reviewed.

Table 1—Summary of the most common algorithms used in radiomic analysis of HRCT: key features and limitations.

Model

RF

DL

Regression

Key features

Robust with moderate data; handles many variables well; 
improves prediction accuracy(18)

Automatic feature extraction; high accuracy on large datasets; 
good for complex pattern recognition(19,21)

Predictive quantitative models; quantitative risk modeling; relates 
selected radiomic features to specific clinical outcomes(23)

Limitations

High computational cost; reduced interpretability with many 
variables(17)

Needs large datasets to achieve optimal performance(22)

Suitable for linear relationships; limited in complex 
scenarios(18)

Figure 3. Overview of the radiomics 
workflow, illustrating the sequen-
tial steps from image acquisition 
to clinical application. Key stages 
include image preprocessing, seg-
mentation, feature extraction and 
selection, model building using AI 
algorithms, and model validation.
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DISCUSSION

The heterogeneous, progressive nature of SSc-ILD 
poses substantial challenges in its diagnosis, staging, and 
monitoring. Radiomics provides innovative opportunities 
to enhance diagnostic precision and prognostic capabili-
ties in SSc-ILD through advanced image quantification 
and feature extraction(7,25). This discussion highlights 
the most recent advancements in PET/CT and HRCT ra-
diomics, exploring their breakthroughs and potential fu-
ture directions.

Several studies have highlighted the utility of HRCT-
based radiomics in staging and monitoring SSc-ILD(25–27,33). 
Notably, slice-reduced protocols have shown diagnostic 
performance comparable to that of full-chest CT, with the 
added benefit of reduced radiation exposure(32). The quality 
of the features extracted from HRCT allows good detail and 
noninvasive follow-up of the disease without the subjective 
limitations of visual scoring.

The development of radiomics has provided great 
benefits for the evaluation of ILDs such as idiopathic 
pulmonary fibrosis. The radiomics-based model demon-
strated excellent performance in distinguishing normal 
lungs from lungs with ILD—with an area under the curve 
(AUC) of 1.00, an accuracy of 99%, a sensitivity of 98%, 

and a specificity of 98%—and differentiating idiopathic 
pulmonary fibrosis with UIP patterns from non-idiopathic 
pulmonary fibrosis ILD, particularly when a typical UIP 
pattern is seen on HRCT—with an AUC of 0.96, an ac-
curacy of 91%, a sensitivity of 88%, and a specificity of 
94%(31). According to Refaee et al.(31), radiomics features 
extracted from HRCT, combined with clinical parameters, 
could support computer-aided decision-making, particu-
larly in identifying and stratifying UIP patterns.

The performance of machine learning models in pre-
dicting early ILD in patients with SSc, on the basis of clin-
ical and instrumental data, was explored by Murdaca et 
al.(25). In their study, the RF model was trained to predict 
the Warrick score, a continuous measure of ILD sever-
ity. Among the algorithms tested by those authors, the RF 
model achieved the best performance, with a root mean 
square error of 0.810 and an R2 of 0.425 on the test set, 
demonstrating its suitability for ILD prediction(25).

Martini et al.(30) evaluated the potential of radiomics 
to detect ILD and assess its severity in patients with SSc, 
comparing it with that of visual analysis of HRCT images. 
The radiomics-based analysis demonstrated superior ac-
curacy in predicting stages in SSc-ILD, with an AUC of 
0.96, a sensitivity of 84%, and a specificity of 99%, com-

Table 2—Summary of studies on PET/CT and HRCT radiomics for SSc-ILD.

Reference

Anthony et al.(28)

Salaffi et al.(29)

Martini et al.(30)

Murdaca et al.(25)

Refaee et al.(31)

Schniering et al.(15)

Mei et al.(20)

Qin et al.(24)

Joye et al.(32)

Zhao et al.(33)

Smith et al.(27)

Year

2017*

2020

2021

2021

2022

2022

2023

2023

2024

2024

2024

Study location

Chicago, USA; 
Texas, USA

Ancona, Italy

Zurich, 
Switzerland

Genoa, Italy

Maastricht, 
Netherlands; 
Wuhan, China

Zurich, 
Switzerland; 
Oslo, Norway

New York, USA

Shandong, 
China

Zurich, 
Switzerland

Hunan, China

Amsterdam, 
Netherlands

N

96

45

60

38

328

156

449

245

166

58

18

Study design

Retrospective

Cohort

Retrospective

Retrospective

Observational

Prospective 
cohort

Retrospective

Retrospective

Comparative 
analysis

Retrospective

Exploratory 
pilot

Inclusion criteria

Esophageal cancer 
subjected to 

radiation therapy

SSc with follow-up 
HRCT

SSc with GAP 
staging

SSc with HRCT and 
functional tests

IPF diagnosis with 
available HRCT data

SSc diagnosis with 
ILD on HRCT

ILD on the initial 
chest CT scan

CTD-ILD with HRCT 
data

SSc with HRCT data

Patients with SSc 
(ACR 1980 criteria) 
who underwent at 

least one lung HRCT.

Hodgkin lymphoma 
with bleomycin-

induced ILD

Methodology

Combined CT texture analysis 
with SUV from PET scans for 

RP prediction

Comparison of quantitative 
methods (CaMs) versus 

visual scoring for ILD 
evolution assessment

Radiomics features extracted 
from HRCT for GAP staging.

Machine learning algorithms 
like random forest to identify 

early lung involvement

Radiomics model using HRCT 
for UIP detection

Radiomics features from 
HRCT for risk stratification

Deep learning model for ILD 
subtype classification

Radiomics-based nomogram 
for GAP stage prediction

Radiomics comparison 
between slice-reduced and 

full-chest CT

AI-based analysis of HRCT to 
identify ILD lesion types and 
correlate them with clinical 
indicators and prognosis

PET/CT scans analyzed using 
radiomics and random forest 

classifier

Key findings

Adding SUV data to CT radiomics 
significantly improved RP diagnosis, 

demonstrating multimodal radiomics 
potential

CaMs outperformed conventional 
methods in detecting disease 

progression

Radiomics predicted GAP stage with 
high accuracy, surpassing visual 

analysis

Random forest showed optimal 
performance for predicting early lung 

involvement

AUC > 0.96 for distinguishing UIP, 
reducing biopsy need

Radiomics effectively stratified risk and 
correlated with biological markers of 

fibrosis

AI system showed high diagnostic and 
prognostic accuracy

The nomogram achieved high accuracy 
in staging ILD (AUC > 0.85)

Slice-reduced CT models slightly 
outperformed full-chest CT, minimizing 

radiation exposure

AI successfully identified HRCT patterns 
and their progression; early ground-

glass lesions were absent in cases with 
pulmonary hypertension

Radiomics features (e.g., SUVmean, 
texture strength) identified and 

classified drug-induced ILD with 72% 
accuracy; predictive potential for early 

onset

*An older article (published in 2017) was included in this table because of its relevance in the PET-CT analysis.
GAP, gender-age-physiology; IPF, idiopathic pulmonary fibrosis; SUV, standardized uptake value; RP, radiation pneumonitis; CaMs, computed-aided methods.
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pared with 0.86, 83%, and 74%, respectively, for the visual 
analysis(30).

As shown by Salaffi et al.(29), to assess ILD in SSc on 
HRCT, the quantitative features captured with computer-
aided methods have also proven superior to those captured 
with visual analyses. In their study, the receiver operating 
characteristic curve showed that the performance of the 
computed-aided method to evaluate changes in HRCT—
AUC of 0.951, with a standard error of 0.0287 (95% CI: 
0.841–0.993) was better than was that of the visual analy-
sis—AUC of 0.807, with a standard error of 0.0644 (95% 
CI: 0.662–0.909)—and the difference was significant (p 
= 0.0065).

One AI model was found to outperform human read-
ers in identifying UIP and other ILD subtypes(20). For UIP, 
the AI model achieved 82.4% sensitivity, surpassing the 
performance of senior radiologists and pulmonologists. 
That AI model enhances diagnostic accuracy and consis-
tency, particularly for challenging ILD subtypes, and can 
incorporate longitudinal data for personalized survival pre-
dictions, guiding clinical management.

The integration of CT-based radiomics features with 
clinical factors for staging CTD-associated ILD can be 
used in order to predict ILD stages. These features have 
been shown to quantify subtle CT patterns that are not 
detectable by visual analysis, such as texture variations(18). 
This methodology offers a quantitative, objective, repro-
ducible method for staging CTD-associated ILD, reducing 
reliance on subjective visual assessments.

In a study analyzing the progression of lung lesions in 
patients with SSc(33), AI was found to be able to identify 

distinct lesions, distribution patterns, and their progres-
sion, aiding in staging and prognostic evaluation (Figure 
4). One important contribution was the ability to identify 
post-treatment changes in a lesion, such as a shift from 
consolidation to honeycombing.

Using 18F-FDG PET/CT to evaluate SSc-ILD offers 
unique insights into the metabolic activity associated 
with fibrotic changes. A semiquantitative analysis related 
to 18F-FDG PET/CT demonstrated that this modality can 
powerfully distinguish between ILD and normal lungs in 
patients with SSc(11). However, it has mainly been applied 
in PET/CT imaging for the diagnosis, prognosis, and as-
sessment of the treatment response in patients with can-
cer(34).

Radiomics applied to 18F-FDG PET/CT represents a 
significant step forward in medical imaging, providing a 
quantitative, standardized approach to the diagnosis and 
management of lung disease. Despite technical and meth-
odological challenges, ongoing research and standardiza-
tion initiatives are paving the way for its broader applica-
tion in clinical settings(28,35).

The potential of 18F-FDG PET/CT radiomics and ma-
chine learning to identify and predict drug-induced ILD in 
patients with Hodgkin lymphoma treated with bleomycin 
was shown by Smith et al.(27). Certain radiomics features, 
including texture strength and zone distance entropy, 
demonstrate potential for identifying drug-induced ILD in 
patients with Hodgkin lymphoma.

Future applications may involve integrating radiomics-
derived metabolic gradients with machine learning algo-
rithms for predictive modeling of disease trajectory and 

Figure 4. Radiomic analysis of HRCT using the software 3D Slicer, version 5.8.1 (www.slicer.org), in a 68-year-old female patient with SSc-ILD diagnosed approxi-
mately 30 years prior. A,B: Pulmonary segmentation obtained by lung CT analyzer. C: Radiomic analysis performed by radiomics module. D: HRCT slices (axial and 
coronal) and 3D reconstruction.
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treatment response, leveraging metabolic data as a surro-
gate biomarker for early intervention(28,36).

Despite advances in radiomics, challenges remain. 
Differences in scanner models, acquisition protocols, and 
segmentation methods can greatly impact the reproducibil-
ity of radiomic findings. Variability in scanner hardware, 
such as in detector types and reconstruction algorithms, 
together with inconsistencies in acquisition parameters, 
like tube current, tube voltage, and reconstruction kernels, 
introduce heterogeneity in image texture and noise charac-
teristics(37). These technical discrepancies can significantly 
alter the extracted radiomic features, leading to unreliable, 
irreproducible results, as well as limiting clinical utility 
and external validation. In addition, the method of image 
segmentation, whether manual, semi-automated, or fully 
automated, adds further variability(37). Therefore, there is 
a clear need for harmonization and standardized reporting 
guidelines in radiomics research. Establishing robust, con-
sensus-driven frameworks for acquisition, segmentation, 
feature extraction, and validation, such as the Radiomics 
Quality Score, is essential for achieving reproducible and 
clinically translatable radiomic biomarkers(38). Further-
more, incorporating radiomics into routine clinical prac-
tice requires robust validation through multicenter studies 
and based on real-world evidence. By overcoming these 
barriers, radiomics could transform from a research tool 
into a key component in medical decision-making(26,36).

The future of radiomics lies in its convergence with AI 
and multi-omics data, such as genomics, proteomics, and 
molecular profiles, paving the way for a new era of truly 
personalized medicine(14,38). This radiogenomic approach 
enables the identification of imaging phenotypes linked to 
specific genetic mutations or pathways, allowing clinicians 
to better stratify patients, predict treatment responses, and 
tailor therapies accordingly(39,40). The use of AI, particularly 
DL algorithms, plays a critical role by handling the com-
plexity and volume of these multimodal datasets, uncover-
ing patterns that would be undetectable through traditional 
analysis(13). The integration of radiomics with molecular 
biomarkers is especially promising in oncology, in which 
combining imaging features with tumor genotypes can im-
prove outcome prediction and treatment selection(14,36).

In the future, the confluence of advanced imaging, 
machine learning, and personalized medicine could trans-
form the care of patients with SSc-ILD. However, to turn 
this vision into reality, one would have to transcend the 
limitations of today and increase interdisciplinary coop-
eration with a view toward standardization and validation 
of these new methodologies.
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