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Abstract

Resumo

Objective: To validate a deep learning (DL) model for bone age estimation in individuals in the city of São Paulo, comparing it with 
the Greulich and Pyle method.
Materials and Methods: This was a cross-sectional study of hand and wrist radiographs obtained for the determination of bone 
age. The manual analysis was performed by an experienced radiologist. The model used was based on a convolutional neural 
network that placed third in the 2017 Radiological Society of North America challenge. The mean absolute error (MAE) and the 
root-mean-square error (RMSE) were calculated for the model versus the radiologist, with comparisons by sex, race, and age.
Results: The sample comprised 714 examinations. There was a correlation between the two methods, with a coefficient of de-
termination of 0.94. The MAE of the predictions was 7.68 months, and the RMSE was 10.27 months. There were no statistically 
significant differences between sexes or among races (p > 0.05). The algorithm overestimated bone age in younger individuals 
(p = 0.001).
Conclusion: Our DL algorithm demonstrated potential for estimating bone age in individuals in the city of São Paulo, regardless of 
sex and race. However, improvements are needed, particularly in relation to its use in younger patients.

Keywords: Artificial intelligence; Machine learning; Deep learning; Bone development; Growth.

Objetivo: Validar em indivíduos paulistas um modelo de aprendizado profundo (deep learning – DL) para estimativa da idade 
óssea, comparando-o com o método de Greulich e Pyle.
Materiais e Métodos: Estudo transversal com radiografias de mão e punho para idade óssea. A análise manual foi feita por um 
radiologista experiente. Foi usado um modelo baseado em uma rede neural convolucional que ficou em terceiro lugar no desafio de 
2017 da Radiological Society of North America. Calcularam-se o erro médio absoluto (mean absolute error – MAE) e a raiz do erro 
médio quadrado (root mean-square error – RMSE) do modelo contra o radiologista, com comparações entre sexo, etnia e idade.
Resultados: A amostra compreendia 714 exames. Houve correlação entre ambos os métodos com coeficiente de determinação 
de 0,94. O MAE das predições foi 7,68 meses e a RMSE foi 10,27 meses. Não houve diferenças estatisticamente significantes 
entre sexos ou raças (p > 0,05). O algoritmo superestimou a idade óssea nos mais jovens (p = 0,001).
Conclusão: O nosso algoritmo de DL demonstrou potencial para estimar a idade óssea em indivíduos paulistas, independente-
mente do sexo e da raça. Entretanto, há necessidade de aprimoramentos, particularmente em pacientes mais jovens.

Unitermos: Inteligência artificial; Aprendizado de máquina; Aprendizado profundo; Desenvolvimento ósseo; Crescimento.

technique, adequate radiation safety, and low cost of the 
procedure(1). The use of the left limb is recommended for 
a number of reasons, including the fact that most people 
are right-handed and there is therefore a greater chance of 
bone injuries on the right side(1).

Among the radiographic methods used in the assess-
ment of bone age, that devised by Greulich and Pyle(3) is 
the most widely used(2). Their method involves the analysis 

INTRODUCTION

Accurate determination of bone age plays a vital role 
in monitoring bone development, acting as a reliable in-
dicator of biological age and growth prognosis(1). There 
are several manual methods of bone age estimation that 
use radiographs of various parts of the body(2). However, 
the hand and wrist are most often chosen, because of the 
presence of multiple ossification centers, simplicity of the 
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of the ossifi cation centers of the left hand and wrist in 
comparison with a standard image atlas. However, it was 
originally developed in the 1950s and was based on a pop-
ulation of White individuals in the United States(3). There-
fore, its applicability and precision, when used in other 
populations, have been questioned(4). In addition, there is 
controversy in the literature regarding its reproducibility, 
with signifi cant discrepancies among the results of studies 
that aimed to evaluate the intraobserver and interobserver 
variability for readings(5). Given this scenario, various au-
tomated models that use artifi cial intelligence (AI) to es-
timate bone age have been proposed, most of them based 
on traditional machine learning (ML), BoneXpert being 
the most widely used(6,7). However, most of the algorithms 
were based on populations in the United States or western 
Europe, and few studies have taken the ethnic and socio-
economic particularities of the individuals into consider-
ation in the analysis of the results(6).

To date, there have been no studies evaluating the 
performance of bone age estimation algorithms in the 
population of Brazil. Therefore, the aim of this study was 
to validate, in children and adolescents in the city of São 
Paulo, Brazil, the predictions of a model based on deep 
learning (DL), a subtype of ML, for estimating bone age, 
comparing the results obtained with an analysis carried 
out by a trained radiologist using the Greulich-Pyle method. 
Such local validation is essential to ensure the accuracy 
and clinical relevance of these AI models before their 
large-scale implementation in clinical settings in Brazil.

MATERIALS AND METHODS

This was a cross-sectional study of radiographs of 
the left hand and wrist obtained at our facility, recorded 
as examinations for the determination of bone age. The 
study was approved by the research ethics committee, on 
the basis of the research project “Development of medical 
imaging databases to promote research and challenges in 
machine learning in the fi eld of radiology”.

A database of radiographs obtained between 2018 and 
2022 was created. The inclusion criterion was having an 
available radiology report describing bone age. All exami-
nations were reported by a radiologist with three years of 
experience in bone age determination by the Greulich-Pyle 
method. Bilateral examinations were excluded, as were ex-
aminations of other parts of the body that were incorrectly 
recorded, those performed with inappropriate technique 
or positioning, those in which there were peripheral cath-
eters, and those in which there were bone deformities that 
hindered the analysis. A convenience sample was used be-
cause there is no universally accepted sample calculation 
method for DL models. The examinations were anony-
mized with specifi c Radiological Society of North America 
(RSNA) software (RSNA Anonymizer), the download and 
source code of which are available at http://mirc.rsna.org/
download/Anonymizer-installer.jar.

The images were uploaded to cloud-based medical im-
age annotation software (MD.ai; MD.ai, Inc., New York, 
NY, USA). Through this, it was noted which radiographs 
met one or more of the exclusion criteria, for later elimi-
nation from the study. Data regarding the age, sex, race, 
chronological age, and reported bone age were also re-
corded for each patient by consulting the medical records. 
The fi ve races proposed by the classifi cation of the Brazil-
ian Institute of Geography and Statistics(8), according to 
the last published census, were as follows: Asian, White, 
Indigenous, Mixed, and Black.

After the data had been collected and annotated, infer-
ential analysis of the examinations was performed by using 
a DL model based on a convolutional neural network (Fig-
ure 1) developed by the Federal University of São Paulo in 
partnership with the Federal University of Goiás. In the 
training phase for the algorithm, the database was divided 
into fi ve subsets and cross-validated. The fi nal prediction 
involves the arithmetic mean of the four models that had 
the best individual result. The hyperparameters were as fol-
lows: initial learning rate, 10−4; batch size, 16; and epochs, 
100. The Adam optimizer was used. As preprocessing of 
the images, all pixels are divided by 255, so that they are 
in the interval [0, 1], after which they are normalized by 
the mean and standard deviation of each examination. The 
image is then resized to 550 × 550 pixels, preserving the 
original proportions, and, if necessary, padding with zeros 
is performed on the edges of the image. Those preprocess-
ing steps were also used for all radiographs included in the 
present study. In the training phase, data amplifi cation was 
also carried out in a proportion of the examinations, with 
modifi cations such as a rotation of ±30°, inversion on the 
horizontal axis, and a zoom of ±10%. This model was previ-
ously trained and tested with the AI competition database 
of the RSNA in 2017, having ranked third among 260 par-
ticipating teams from all over the world, with a mean abso-
lute error (MAE) of 4.38 months(9).

The next step was a comparative analysis versus the 
radiologist report. The absolute errors of the algorithm 
result, in relation to the conventional reading, were cal-
culated for each patient, and the result was expressed in 
months. The MAE was calculated by determining the sum 

Figure 1. Architecture of the ice module, the basic block of the model used, 
which consists of a transposed convolution (Transpose Conv) layer followed 
by a convolution (Conv) layer and a pooling (Pool) layer, as well as a shortcut 
through a residual connection.
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of absolute errors and dividing it by the total number of 
examinations. This metric is widely used to evaluate the 
performance of AI algorithms that involve predictions of 
numerical variables. Its advantage over other similar met-
rics, such as the root-mean-square error (RMSE), is that it 
is not subject to variations in the distribution of error mag-
nitude and sample size(10). However, because other studies 
of this topic use the RMSE, we also calculated that metric 
for the sample as a whole, in order to allow comparative 
analyses with such studies.

Because the variables of interest did not have a nor-
mal distribution, descriptive analyses were also carried 
out using median and interquartile range (interquartile 
range). To detect points outside the curve, the equation 
median + 1.5 × interquartile range was employed. Com-
parative statistical analyses of results by sex and age group 
were performed with the Mann-Whitney test. For com-
parisons among races, the Kruskal-Wallis test was applied 
for all groups. In addition, linear regression was performed 
to detect differences between the reported bone age and 
the algorithm’s prediction, with calculation of the Pear-
son correlation coefficient and coefficient of determina-
tion. A Bland-Altman plot was constructed to study the 
non-absolute error, which preserves the information if the 
model overestimated or underestimated the bone age in 
comparison with the estimation made by the radiologist.

The study was carried out with the Python pro-
gramming language, version 3.0(11), using the Pandas(12) 
and SciPy(13) libraries for statistical analyses. To create 
the graphs, the MatPlotLib(14) and Seaborn(15) libraries 
were used. For algorithm inference, the PyTorch(16) and 
NumPy(17) packages were used. In all conclusions obtained 

Table 1—General characteristics of the study sample.

Variable

Sex, n (%)
Female
Male

Chronological age (years), median (IQR)
Bone age (years), median (IQR)
Race, n (%)

White
Mixed
Black
Asian
Indigenous
No data

(N = 714)

369 (51.68)
345 (48.32)

10.79 (8.27–13.33)
11 (8.83–13.5)

338 (47.34)
214 (29.97)

23 (3.22)
1 (0.14)
1 (0.14)

137 (19.19)

by inferential analyses, a significance level of 5% (p ≤ 0.05) 
was adopted.

RESULTS

A total of 764 examinations met the inclusion criteria 
and were eligible. Of those, 50 were eliminated because 
they met one of the exclusion criteria, leaving 714 exami-
nations (Figure 2). The demographic data of the patients 
who underwent those 714 examinations are presented in 
Table 1. Ages ranged from 1 year and 3 months to 19 years 
and 10 months, and only six patients were under 3 years 
of age. For 137 patients, there was no information about 
race, and the corresponding radiographs were excluded 
from the analyses of that independent variable. There was 
only one Asian patient and one Indigenous patient, both 
of whom were also excluded from those analyses because 
of an insufficient number of cases.

Figure 2. Study flow chart.

Excluded
(n = 50)
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– Poor positioning (n = 4)
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P

0.575

0.368†

0.001‡

Table 2—Analysis of the overall MAE, by sex, race, and age, in months.

Variable

Sex (N = 714)
Female
Male

Race (n = 575)
White
Mixed
Black

Age* (N = 714)
≤ 10,79 years
> 10,79 yeras

MAE

7.55
7.82

7.25
7.85
6.32

8.43
6.41

Median

5.88
5.64

5.50
6.13
6.52

6.42
5.16

IQR

3.05–10.65
2.36–11.34

2.21–10.36
2.86–11.61
4.22–8.46

3.23–11.87
2.19–9.62

* 50th percentile for chronological age. † Kruskal-Wallis multiple comparison 
test for the three groups. ‡ Statistically significant.

In the study of the correlation between the bone age 
reported by the radiologist and the algorithm prediction, 
linear regression was performed with a line that was close 
to the ideal line, which would be the case in which all 
of the predictions of the model were correct (y = x). The 
Pearson correlation coefficient was 0.97 and the determi-
nation coefficient was 0.94 (Figure 3). The analysis of the 
linear correlation and of the Bland-Altman plot (Figure 4), 
which illustrates the non-absolute error (prediction − re-
ported bone age), suggested a tendency for the algorithm 
to overestimate bone age in younger people.

The MAE of the predictions in relation to the reported 
bone age was 7.68 months for the sample as a whole. The 
RMSE was 10.27 months (0.86 years). Table 2 describes 
the MAEs, expressed as medians and interquartile ranges, 
for all examinations and broken down by sex, race, and 
age group, together with the respective p-values for the 
inferential analyses between and among the groups. The 
data were divided at the 50th percentile for chronological 
age, to test the hypothesis that the model overestimated 

bone age in younger individuals, which was confirmed. 
The comparisons between sexes and among races revealed 
no statistically significant differences (Figures 5 and 6). 
In the interquartile range analysis, there were 19 points 
outside the curve (Figures 5 and 6).

Figure 4. Bland-Altman plot of the error in relation to the mean of the manual 
measurements and the algorithm.
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Figure 3. Graph of predictions in relation to reported bone age.
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Figure 5. Box and whisker plot of absolute errors, by sex, in the study sample. 
Diamonds indicate outliers.
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Figure 6. Box and whisker plot of absolute errors in relation to each race in the 
study sample. Diamonds indicate outliers.
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DISCUSSION

In this study, we sought to validate a DL algorithm for 
calculating bone age based on radiographs of the hands 
and wrists of patients followed at our facility. The MAE of 
the model prediction in relation to the radiologist report 
was 7.68 months, a value lower than the 9.96 months re-
ported in a recent meta-analysis among studies that used 
different ML techniques to predict bone age(6). This in-
dicates that, in a real clinical context, the performance 
of the algorithm is comparable to or better than those 
of other proposed models. However, performance in our 
data was considerably worse relative to the RSNA chal-
lenge data, with a MAE of 4.38 months(9). One possible 
explanation for that is the fact that the algorithm was 
trained on populations in the United States, with phe-
notypes different from those of the population of Brazil. 
However, it is noteworthy that the test group, in the chal-
lenge database, was annotated on the basis of the opinion 
of six radiologists, which reduces the chance of human 
error and could, in part, explain this discrepancy between 
the MAEs.

In our study, the RMSE was 10.27 months (0.86 
years) for the sample as a whole. The most widely used and 
validated algorithm, BoneXpert, based on traditional ML, 
obtained an RMSE of 0.72 years in its version 2(18–20) and 
0.62 years in its version 3(7), both measured in a test group, 
independent of the training group, of patients in the city of 
Tübingen, Germany, and based on the readings of just one 
radiologist. Despite the poorer performance of our model, 
it should be borne in mind that the other model was trained 
on data related to patients of European or North American 
origin, whose ethnic, socioeconomic, and nutritional char-
acteristics are closer to those of the test group used than to 
those of our study sample. When we compared our model 
with one that used DL(21), also trained on the RSNA data-
base and validated on an external database, we found that 
the latter performed better than did our algorithm, with an 
MAE of 5.96 months. However, that model was validated 
only at centers in the United States, the same country of 
origin of the examinations on which it was trained, and the 
annotation was performed by four radiologists, substantial-
ly reducing the chance of human error.

The absence of a statistically significant difference be-
tween sexes and among races in relation to the absolute 
error suggests that the model has a uniform performance 
for boys and girls of different ethnicities, which is a de-
sirable characteristic for clinical application. There have 
been few studies comparing the performance of bone age 
algorithms among races(6). Nevertheless, it is important 
to note that the low number of Black individuals in the 
sample might have been insufficient for the statistical test 
to capture any difference and did not reflect the ethnic 
distribution of the population of Brazil(22).

Our automated method overestimated bone age in 
younger patients. One possible explanation for that find-

ing is the greater variability in bone development among 
such individuals, which can be difficult for the model to 
capture(23). Therefore, improvements in model training 
could be necessary in order to improve the performance of 
the algorithm in this age group.

Despite the encouraging results, our study has some 
limitations that should be considered when interpreting 
the findings. As previously mentioned, bone age was de-
termined on the basis of the assessment of only one radi-
ologist, which introduces an expected error, given that the 
interpretation of traditional methods of bone age determi-
nation is subjective and can vary between observers(5,23). 
In addition, our sample had a low number of participants 
who self-identified as Black, only one who self-identified 
as Asian, only one who self-identified as Indigenous, and 
only six who were under the age of three. Those aspects 
could have reduced the generalizability of our results. 
Furthermore, there was a significant lack of information 
about the race of some of the patients. Finally, the lack 
of detailed information about patient comorbidities is an-
other limitation, because certain medical conditions can 
influence bone development(23).

In conclusion, the DL algorithm validated in this study 
shows promise for estimating bone age in children and 
adolescents of both sexes and of different races in Brazil. 
However, it is important to consider its limitations and the 
need for refinement to improve its clinical applicability, 
especially in younger patients. In addition, the algorithm 
should not be seen as a substitute for radiologist assess-
ment, but rather as a complementary tool in the process of 
determining bone age.
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