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Application of a protocol for magnetic resonance spectroscopy
of adrenal glands: an experiment with over 100 cases*

Aplicação de um protocolo de espectroscopia por ressonância magnética das adrenais: experiência
com mais de 100 casos

Melo HJF, Goldman SM, Szejnfeld J, Faria JF, Huayllas MKP, Andreoni C, Kater CE. Application of a protocol for magnetic resonance spectroscopy of

adrenal glands: an experiment with over 100 cases. Radiol Bras. 2014 Nov/Dez;47(6):333–341.

Abstract

Resumo

Objective: To evaluate a protocol for two-dimensional (2D) hydrogen proton (1H) magnetic resonance spectroscopy (MRS) (Siemens

Medical Systems; Erlangen, Germany) in the detection of adrenal nodules and differentiation between benign and malignant masses

(adenomas, pheochromocytomas, carcinomas and metastases).

Materials and Methods: A total of 118 patients (36 men; 82 women) (mean age: 57.3 ± 13.3 years) presenting with 138 adrenal

nodules/masses were prospectively assessed. A multivoxel system was utilized with a 2D point-resolved spectroscopy/chemical shift

imaging sequence. The following ratios were calculated: choline (Cho)/creatine (Cr), 4.0–4.3/Cr, lipid (Lip)/Cr, Cho/Lip and lactate (Lac)/Cr.

Results: 2D-1H-MRS was successful in 123 (89.13%) lesions. Sensitivity and specificity values observed for the ratios and cutoff points

were the following: Cho/Cr ≥ 1.2, 100% sensitivity, 98.2% specificity (differences between adenomas/pheochromocytomas and carcinomas/

metastases); 4.0–4.3 ppm/Cr ≥ 1.5, 92.3% sensitivity, 96.9% specificity (differences between carcinomas/pheochromocytomas and

adenomas/metastases); Lac/Cr ≤ –7.449, 90.9% sensitivity and 77.8% specificity (differences between pheochromocytomas and

carcinomas/adenomas).

Conclusion: Information provided by 2D-1H-MRS were effective and allowed for the differentiation between adrenal masses and nodules

in most cases of lesions with > 1.0 cm in diameter.

Keywords: Adrenal gland; Magnetic resonance imaging; Spectroscopy.

Objetivo: Avaliar um protocolo de espectroscopia por ressonância magnética (ERM) do próton de hidrogênio (1H) bidimensional (2D)

disponível comercialmente (Siemens Medical Systems; Erlangen, Alemanha), aplicado para nódulos adrenais e diferenciação das mas-

sas (adenomas, feocromocitomas, carcinomas e metástases).

Materiais e Métodos: Um total de 118 pacientes (36 homens e 82 mulheres), apresentando-se com 138 nódulos/massas adrenais,

foi avaliado prospectivamente (média de idade: 57,3 ± 13,3 anos). Uma sequência de ERM-1H-PRESS-CSI (espectroscopia por

resolução de ponto-imagem por desvio químico) multivoxel foi utilizada. Análise espectroscópica foi realizada da esquerda-direita, sen-

tido crânio-caudal, usando três sequências sagitais, além de sequências axiais e coronais T2-HASTE. Os seguintes índices foram calcu-

lados: colina (Cho)/creatina (Cr), 4,0–4,3 ppm/Cr, lipídio (Lip)/Cr, Cho/Lip e lactato (Lac)/Cr.

Resultados: ERM-1H-2D foi bem sucedida em 123 (89,13%) lesões. Os valores de sensibilidade e especificidade encontrados para

as proporções e pontos de corte avaliados foram: Cho/Cr ≥ 1,2, sensibilidade de 100% e especificidade de 98,2% (diferenciação de

adenomas e carcinomas de feocromocitomas e metástases); 4,0–4,3 ppm/Cr ≥ 1,5, 92,3% de sensibilidade, especificidade de 96,9%

(diferenciação de carcinomas e feocromocitomas de adenomas e metástases); Lac/Cr ≤ –7,449, sensibilidade de 90,9% e especifici-

dade de 77,8% (diferenciação de feocromocitomas contra carcinomas e adenomas).

Conclusão: Os dados da ERM-1H-2D foram eficazes e permitiram a diferenciação entre massas adrenais e nódulos na maioria das

lesões com diâmetro > 1,0 cm.

Unitermos: Glândula adrenal; Ressonância magnética; Espectroscopia.
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INTRODUCTION

The adrenal glands, also called suprarenal glands, are

affected by complex physiological and neoplastic processes.

In addition to that, such glands are small and located in the

retroperitoneum, which by itself creates difficulties for the

physical examination(1).

Thus, any suspicion of the presence of a mass in the

adrenal gland requires anamnesis and thorough physical

examination, biochemical evaluation of all pertinent hor-

mones and additional imaging studies. Adrenal insufficiency

occurs when there is destruction of more than 90% of the

gland(2).

Algorithms for endocrinological testing and imaging are

utilized to investigate adrenal masses etiology, including

primary hyperaldosteronism, pheochromocytoma, viriliza-

tion and Cushing’s syndrome. The differentiation between

malignant and benign masses is of utmost importance, as

metastases in the adrenal glands are common, representing

the fourth most common site of metastasis in the human body.

Adrenocortical carcinoma, on the other hand, has a low preva-

lence, but remains as an object of clinical interest because

of its high mortality rate(3).

Magnetic resonance imaging (MRI) and computed to-

mography (CT) are commonly utilized in the evaluation of

adrenal lesions, either incidental or not(2,4,5). However, the

morphological image, in spite of its usefulness, is limited in

cases of low-fat adenomas, metastases and heterogeneous

masses(1–9).

In order to overcome such a limitation, there is the

possibility of resorting to functional MRI. Such an imaging

method, duly dedicated, can provide metabolic data of nod-

ules and masses in the adrenal gland. The functional MRI

techniques are based on the concentration of intracellular

lipids in the mass(5,6,9), on differences in perfusion between

malignant and benign masses(4,8) and on the metabolic ac-

tivity of the mass(7,10,11).

Besides the functional characteristics, MRI has the best

contrast resolution for adrenal evaluation as compared with

other imaging methods. It has appropriate spatial resolution

for the detection of lesions of ≥ 0.5 cm. Fat suppression is

utilized in strongly T2-weighted images which are not de-

graded by chemical shift artifacts produced by the fat sur-

rounding the adrenal glands. Multiplanar images are help-

ful in detecting the invasion of adjacent structures by adre-

nal masses(4).

Among the functional MRI techniques, one should high-

light hydrogen-1 (1H) magnetic resonance spectroscopy

(MRS), a noninvasive technique free of potential risks with

which one may monitor either acute or chronic stages of a

disease. The development of methods for spatial location of

samples with relative levels of mobile metabolites in a vol-

ume defined from MR images is the basis for the integra-

tion of data obtained by such a technique. The association

of anatomical and pathological data with MR images pro-

vides a new way to understand the origins and progression

of the diseases(12).

For more than ten years, Universidade Federal de São

Paulo (Unifesp) has been sponsoring the Group of Advanced

Studies on Adrenal Pathologies, which comprises the disci-

plines of Imaging Diagnosis, Endocrinology and Urology.

Along these last years, the authors studied at least two hun-

dred cases of adrenal masses and had the opportunity to start

a pilot project on functional evaluation of adrenal masses by

means of 1H MRS, whose initial experiment was published

in 2007(10). However, much has needed to be improved since

then.

Given the actual prospects of significant improvements

in the etiological diagnosis of masses in the adrenal glands

by means of 1H MRS, the authors have sought, on the

grounds of the mentioned project, to develop and define the

protocol for acquisition and post-processing of spectroscopic

data at the Department of Imaging Diagnosis of Hospital

São Paulo – Escola Paulista de Medicina (EPM-Unifesp).

MATERIALS AND METHODS

Study

Prospective study evaluating 118 patients with adrenal

nodules or masses (36 men and 82 women), with a mean

age of 57.3 ± 13.3 years. All the patients were previously

evaluated either by adrenal CT (60 patients) with a dedicated

protocol (density measurement in the post-contrast phase)

and calculation of the absolute washout rate, or by MRI (58

patients) with T1-weighted in-phase and out-phase sequences

(for detection of intracellular lipids), and contrast-enhanced

T2-weighted sequences. Forty-five nodules or masses were

located exclusively in the right adrenal gland, and 53 were

located in the left adrenal gland. Twenty patients presented

with bilateral masses or nodules, totaling 138 nodules. All

patients underwent MRI with the proposed hydrogen-1 MRS

protocol. The patients were referred to the Department of

Imaging Diagnosis of Unifesp by the units of Endocrinol-

ogy and Urology. The data collection for the study occurred

between January 2007 and December 2009.

Such protocol was previously submitted and approved

by the Committee for Ethics in Research of EPM-Unifesp.

Inclusion criteria

The patients were selected according to the following

inclusion criteria: a) patient with adrenal nodule or mass with

> 1.0 cm in diameter and previous CT or MRI scan with a

dedicated adrenal protocol; b) histopathological confirma-

tion by biopsy or surgery in cases of pheochromocytoma,

functional adenoma, carcinoma, or uncharacteristic lesions;

c) lesion stability for more than 12 months at CT or MRI in

patients diagnosed with adenoma.

Non-inclusion criteria

Non-inclusion criteria were the following: a) patients

included in chemotherapy protocols or those with previous
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history of adrenal biopsy/surgery; b) patients for whom it

was not possible to schedule the 1H MRS.

Exclusion criteria

Although previously selected, some of the patients ended

up being excluded for: a) presenting with lesions > 1.0 cm

in diameter, but with no voxel eligible for analysis; b) pre-

senting with adrenal nodule mass with almost 1.0 cm in di-

ameter, presenting with contamination in the spectroscopic

curves.

Thus, among the 20 patients with bilateral masses or

nodules, only 6 had their lesions with greater diameter ana-

lyzed, and in other 2 patients, both were excluded. Among

the patients with unilateral lesions, two were not included,

one for not being cooperative during the scan and the other

for presenting with a nodule < 1.0 cm in diameter. Five other

patients were excluded for presenting with adenomas with

approximately 1.0 cm in diameter but with no voxel eligible

for analysis.

Thus, 109 patients (34 men and 75 women) met all the

inclusion criteria in the study for final analysis, with a mean

age of 57.8 ± 13.1 years, presenting with adrenal lesion > 1.0

cm (mean ± standard-deviation: 3.67 ± 2.39 cm), with a

total of 123 masses or nodules, separated into four groups

(adenoma, carcinoma, pheochromocytoma and metastasis).

Scan protocol

Patient preparation and positioning

The patient preparation before the scan consisted of four-

hour fasting, intravenous administration of an antispasmodic

drug 10 minutes before the scan, and application of a ques-

tionnaire about contraindications for MRI.

The patients were positioned with the feet going into

the MRI apparatus first, with the arms extended along the

body in dorsal decubitus over the spine coil (SP-spine). Once

the patient was properly centered on the exam table, the

anterior phased array coil was positioned.

Scan technique

MRI protocol

The scans were performed in a 1.5 T, 43 mT/m gradient

equipment (Magnetom Sonata; Siemens Medical Systems,

Erlangen, Germany), at the Department of Imaging Diag-

nosis of EPM-Unifesp, and in a 1.5 T, 33 mT/m gradient

equipment (Magnetom Espree; Siemens Medical Systems,

Erlangen, Germany), at Centro de Ultrassonografia e Radio-

logia Aplicada (Cura). The experiment period(10) for learn-

ing and development of the study was from August 2004 to

December 2006, to assist in adjustments of the protocol and

scan sequences.

The MRI scan was performed at the level of the adrenal

mass, and consisted of half-Fourier acquisition single-shot

turbo spin-echo (HASTE) T2-weighted sequences, and in

phase and out of phase T1-weighted CSI following the same

criteria of the previous study developed by the authors. Table

1 shows a summary of the physical parameters of the se-

quences in the two apparatuses and for all patients, regard-

less the existence of previous MRI studies.

The HASTE sequences were performed in the three

orthogonal planes for the three-dimensional (3D) localiza-

tion of the mass with 1H MRS planning purposes. In order

to determine the correct insertion of the volume of interest,

three sagittal HASTE localization sequences were performed,

with the same programming characteristics, with free breath-

ing, and maximum inspiration and expiration.

Thus, the gland position and mobility intervals were

obtained, from the highest (expiration) to the lowest (inspi-

ration), with determination of the region where the nodule

or adrenal mass would possibly be localized during the 1H

MRS acquisition with free breathing. Thus, the probability

of the adrenal mass or nodule being located within this in-

terval was increased.

Protocol for the acquisition of spectroscopic data

A multiple volume system was utilized to select the spec-

troscopic volume of interest acquired by means of 2D PRESS-

CSI sequence, with spectral water suppression, commercially

available through Siemens Medical Systems, in such a man-

ner to minimize possible artifacts from periadrenal structures.

The 1H MRS programming was performed with T2-

weighted HASTE sequences in two stages. In the first stage,

only sagittal images at maximum inspiration and expiration

and free breathing were utilized, with the multivoxel grid

carefully positioned at center of the lesion, with the use of

all three sagittal sequences, as per Figure 1, to include as

much of the lesion area as possible or, preferentially, the

entire lesion and part of the adjacent fat tissue.

Once the dimensions of the field of view and of the shim-

ming were determined, the second phase of the program-

ming was carried out, with three orthogonal planes at expi-

ration. Such a procedure was aimed at determining the thick-

ness of the voxel, enabling only the radiofrequency (RF) coil

Table 1—MRI sequence parameters utilized in the protocol.

Sequence

Axial T2 HASTE

Axial T2 HASTE fat saturation

Coronal T2 HASTE

Sagittal T2 HASTE

Axial T1 CSI in-phase

Axial T1 CSI out of phase

Number of images

24

24

20

13

24

24

Thickness (mm)

3.0

3.0

3.0

3.0

3.0

3.0

TR (ms)

1.000–2.000

1.000–2.000

1.000–2.000

1.000–2.000

173

173

TE (ms)

87

87

82

87

4.8

2.4

Matrix

167 × 256

167 × 256

167 × 256

167 × 256

167 × 256

167 × 256

Field of view (mm)

280–350

280–350

280–350

280–350

280–350

280–350
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closest to the mass or nodule, and positioning the external

saturation bands, as shown on Figure 2.

Besides being freely angled, without impairing the spec-

troscopic acquisition, the 1H MRS sequence provides the

possibility of resorting to six 30 mm-thick external satura-

tion bands positioned around the adrenal gland, minimiz-

ing the effects of the non-homogenization of the field by the

magnetic susceptibility effect originated in the air in the lung

parenchyma, bone structures, periadrenal fat and in the flu-

ids present in the biliary tree and kidneys.

The total scan time including patient positioning and

images and spectroscopic data acquisition was approximately

30 minutes.

Images and spectroscopic data analysis

The acquired data were analyzed by two observers, each

one with seven-year experience, in consensus. Both observ-

ers had access to all clinical data from the patients, includ-

ing previous CT and MRI studies. The images were processed

on a workstation (Leonardo®; Siemens Medical Systems)

equipped with a dedicated software for spectroscopy analy-

sis. A 1000 Hz Gaussian filter and priority was given to trans-

formation of Fourier data into two spatial directions, with a

the Hamming filter.

The 1H MRS matrix was adjusted to the three orthogo-

nal planes utilized in the programming, and the most ap-

propriate voxels were selected for analysis. A voxel was con-

sidered eligible whenever 100% of its area was located within

the tumor tissue, with a satisfactory spectral curve. Voxels

located in the adjacent fat tissue were not included in the

spectral analysis.

Once the amplitudes of the metabolites of interest were

measured, the following metabolic ratios were calculated:

choline (Cho)/creatine (Cr), 4.0–4.3 ppm/Cr, Cho/lipid

(Lip) and Lip/Cr. In the differentiation of the masses or

nodules, only the two first ratios observed since the first study

were taken into consideration(10), as being those with higher

sensitivity and specificity to differentiate adenomas, carci-

nomas, pheochromocytomas and metastases. The time re-

quired for analysis of the spectroscopic data was approxi-

mately one hour, varying according to the size of the nodule

or adrenal mass being studied.

Initially, the reproducibility of the spectral results and

respective classification of nodules and masses were verified

in relation to the previous study developed by the authors.

With the purpose of utilizing other metabolites for the

spectroscopy study of the adrenal gland, lactate (Lac) was

also considered, and once the amplitudes of such a metabo-

Figure 1. Adjustment of the positioning and size of the field of view and shimming area.

Figure 2. Final programming of adrenal gland 1H-MRS.



Melo HJF et al. / Application of MR spectroscopy in more than 100 adrenal glands

Radiol Bras. 2014 Nov/Dez;47(6):333–341 337

lite were obtained, the mathematical ratio with creatine was

calculated (Lac/Cr).

Statistical analysis

Data were analyzed by utilizing the Excel® and BioEstat

4.0® softwares for a better characterization of nodules and

masses metabolic ratios in the four groups under analysis

(adenoma, carcinoma, pheochromocytoma and metastasis).

For such a purpose, central tendency and dispersion values

were calculated for each one of the groups.

The Student’s t test was also applied for paired samples,

comparing the average metabolic ratios in the different

groups, and the chi-squared test to correlate the differences

between relationships, with the Yates correction or the exact

Fisher’s test for cell values < 5.

The receiver operating characteristic (ROC) curve was

utilized to determine ratio where masses or nodules present

intergroup differences, and the tables’ analysis capability was

evaluated. Sensitivity, specificity, positive predictive value

(PPV) and accuracy were calculated from the determined cut-

off points. Significance was set at value < 0.05 (p < 0.05).

RESULTS

Based on the proposed sequences and reading method,

the authors were able to perform the scans of 123 (89.13%)

of the studied masses or nodules. Amongst the excluded le-

sions, 10 (7.25%) corresponded to lesions with < 1.0 in their

largest diameter. The remaining cases (five nodules; 3.62%)

were excluded from the study for not presenting with eligible

voxels (unsatisfactory spectral curve), even with nodule size

above the pre-established value. Even so, amongst the 123

masses or nodules included in the present study, 32 (25.2%)

were between 1.0 and 1.9 cm (mean = 1.64 ± 0.27 cm).

Tables 2, 3 and 4 show that the reproduction of the re-

sults obtained in the previous study(10) was possible utilizing

the ratio Cho/Cr ≥ 1.2 to differentiate adenoma and pheo-

chromocytoma from carcinoma and metastasis, with a sen-

sitivity of 100%, specificity of 98.2%, PPV of 83.3% and

accuracy of 98.4%, with analysis capability of 0.9872. The

ratio 4.0–4.3 ppm/Cr ≥ 1.5 was utilized to differentiate car-

cinoma and pheochromocytoma from adenoma and metasta-

sis, with sensitivity of 92.3%, specificity of 96.9%, PPV of

89.3% and accuracy of 95.93%, with analysis capability of

0.7843. Figure 3 shows the spectroscopic behavior of the

studied masses.

The authors also included the Lac metabolite in the

evaluation, as the presence of lactate peaks was observed in

the majority of the masses. Such an evaluation was also made

by means of the relation with Cr. For the Lac/Cr ratios, the

groups behaved as shown on Table 5.

The ROC curve calculated for the differentiation between

pheochromocytoma and adenoma, demonstrated on Figure

4, determined a cut-off point of –4.79, with sensitivity of

65.3%, specificity of 72.7%, PPV of 91.44%, accuracy of

66.65% and analysis capability of 0.67. On the other hand,

Table 3—Comparison of the results of the Cho/Cr ratio obtained by 1H MRS.

Cho/Cr

> 1.20

≤ 1.20

Number of carcinomas

and metastases

10

0

Number of adenomas

and pheochromocytomas

2

111

Sensitivity, 100%; Specificity, 98.2%; Positive predictive value, 83.3%; Accuracy,

98.4%.

Table 4—Comparison of the results from the 4.0–4.3 ppm/Cr ratio obtained by

1H MRS.

4.0–4.3 ppm/Cr

> 1.50

≤ 1.50

Number of carcinomas

and pheochromocytomas

25

2

Number of adenomas

and metastases

3

93

Sensitivity, 92.3%; Specificity, 96.9%; Positive predictive value, 89.3%; Accuracy,

95.93%.

Table 2—Descriptive analysis of the studied groups for the Cho/Cr and 4.0–4.3

ppm/Cr ratios.

Group

Adenoma

(n = 92)

Pheochromocytoma

(n = 19)

Carcinoma

(n = 9)

Metastasis

(n = 3)

Cho/Cr 4.0–4.3 ppm/Cr

Mean ± SD

0.09 ± 0.12

0.78 ± 0.34

1.72 ± 0.40

1.42 ± 0.21

Mean ± SD

0.60 ± 0.50

6.36 ± 8.86

4.28 ± 1.98

0.92 ± 0.32

SD, standard deviation; Min, minimum value; Max, maximum value. p < 0.01.

Min

0

0

1.25

1.28

Max

0.67

1.17

2.35

1.67

Min

0

1.5

1.69

0.57

Max

1.45

34.55

7.98

1.22

Table 5—Descriptive analysis of the studied groups for the Lac/Cr ratio.

Group

Adenoma

Pheochromocytoma

Carcinoma

Metastasis

Lac/Cr

Mean ± SD

–4.61 ± 7.77

–2.64 ± 3.24

–12.43 ± 7.31

–2.43 ± 4.22

Min

–38.84

–10.02

–21.89

–7.31

Max

0.0

0.0

–0.63

0.0

SD, standard deviation; Min, minimum value; Max, maximum value.

the ROC curve for differentiation between pheochromocy-

toma and carcinoma (Figure 4B) determined a cut-off point

of –7.449, with sensitivity of 90.9%, specificity of 77.8%,

PPV of 83.35%, accuracy of 85.01% and analysis capability

of 0.93.

DISCUSSION

The utilization of CT and MRI in the imaging investi-

gation of adrenal glands is well established in the differen-

tiation between adenomas e non-adenomas(2,4,13). However,

the difficulties associated with radiodiagnosis techniques

applied to suprarenal glands are not only in the diagnosis of

atypical adenomas, but also in the detection of other changes

such as metastases, pheochromocytomas and the adenocar-

cinomas(6,9,14,15). Benign pheochromocytoma features at CT
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and at MRI are generally confused with those of carcinomas

and metastases(16). The present study demonstrates the utili-

zation of 1H MRS as a new tool in the diagnosis of adrenal

nodules and masses, increasing the MRI specificity.

The utilization of MRS techniques with high sensitivity

and high spatial resolution was required because of the deep

location of the adrenal glands, the complexity of their

anatomy and zonal physiology, their proximity with regions

with significant magnetic susceptibility effect and due to the

heterogeneous nature of the nodules and masses that affect

those glands.

A static magnetic field of at least 1.5 T is necessary in

order for the in vivo spectroscopic study to reach appropri-

ate sensitivity with a clinically acceptable acquisition time

Figure 3. Spectroscopic charts of

the adrenal gland in four different

masses: adenoma (A), pheochro-

mocytoma (B), carcinoma (C), me-

tastasis (D). The respective Cho, Cr,

Lip and H2O peaks are identified on

their respective curves.

Figure 4. ROC curve of the Lac/Cr

ratio between adenoma (A) and car-

cinoma (B) groups with pheochro-

mocytoma. A: Lac/Cr ≤ –4.79 (ad-

enoma). B: Lac/Cr ≤ –7.449 (carci-

noma).
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and resolute distribution of the signals from different tis-

sues(17). Such a condition is relevant since the polarization

or vector intensity depends directly on the externally applied

B0

(12).

The gradient coils are also incorporated into the MRI

apparatus in order to produce magnetic fields that vary lin-

early throughout the sample so as it is possible to utilize one

(1D), two (2D) or three (3D) dimensions of the phase en-

coding gradient when obtaining the spectrum(18). In the

present study, a 2D spectroscopic sequence was utilized,

combining an appropriate spatial resolution with a clinically

feasible acquisition time of approximately 7 minutes for large

lesions and approximately 12 minutes for small lesions.

The technical advances in abdominal MR images acqui-

sition comprised the development of phased-array RF coils

or multi-coil systems, either for utilization as single coils with

anterior and posterior elements, or for utilization of differ-

ent coils, which may be either combined or used individu-

ally(19).

This coil provides improved signal-noise ratio (SNR),

uniform sensitivity and spatial resolution of a surface coil,

but with an increased field of view. Such a characteristic is

normally utilized for abdomen imaging without increasing

the acquisition time. It may be utilized not only to produce

images but also to acquire spectrographic charts, with no

restrictions regarding type of pulse sequence to be applied.

Additionally, the most important feature of the phased-

array coil is the minimization of artifacts resulting from

mutual coupling between surface coils. That causes the sepa-

ration of the resonance frequencies and interrupts the signal

transmission and reception pattern(20).

Soon after the introduction of the phased-array coils, one

observed that they could also be utilized to further reduce

the images acquisition time by sampling the MRI signal in

a parallel mode. Such a technique is based on the concept

that the acquisition time is proportional to the number of

phase encoding lines in a Cartesian approach. In parallel MR

image, the utilization of phased-array antennas is important

to decrease or prevent fold-over artifacts(21).

The techniques of partially parallel imaging with simul-

taneous acquisition of spatial harmonics (SMASH) has been

combined with single-shot imaging protocols, such as

echoplanar acquisition, burst and half-Fourier single-shot

turbo spin-echo (HASTE or RARE) acquisitions. The lat-

ter, used in the present study, is characterized by an ultrafast

T2-weighted MRI sequence which acquires more than one-

half of a 2D image in the K space after a single excitation

pulse by means of an echo train separated by refocusing

pulses. Such a sequence is less sensitive to motion and can

be acquired in apnea(22).

In the present study, the PRESS method was utilized for

the spectroscopic localization. Such a method excites directly

the volume of interest, with minimum excitation in the rest

of the sample. The volume encoding, whether single or

multiple, may be obtained by a single pulse sequence, with

three selective pulses, each one of them along the x, y, and z

directions in order to obtain the location.

The PRESS method may be preceded by selective chemi-

cal shift pulses (CHESS) and the BASING protocol in or-

der to obtain water suppression. The suppression performed

by the external saturation bands may also be programmed

before the spectroscopic acquisition. By the spectral suppres-

sion method, the transverse magnetization is selectively de-

phased before and after the second spin-echo pulse. The de-

phasing affects water only between 4.0 and 5.4 ppm(12,23).

In the present experiment, the multidimensional CSI

localization method was utilized in addition to PRESS. The

data acquisition is carried out in the absence of the frequency

encoding gradient, so that the information of the chemical

shift can be saved. It is classified into sequence with and

without spin-echo. In the present study, he advantage of the

method with echo is the movement with data acquisition,

connecting the gradients and allowing for all resonances to

get into phase during the phase encoding(12,23).

The first in vivo 1H MRS studies of the adrenal gland

were performed by utilizing spectroscopic images, as a way

to select the region of spectroscopic interest. In spite of the

satisfactory initial results, some limitations of such a method

should be highlighted, namely: the impossibility of construct-

ing the spectral charts, the visualization of the mass/nodule

in only one orthogonal plane, the low B0 value, and the vi-

sualization restricted to only water and fat(24).

In 2009, Kim et al. proposed the utilization of in vivo

single voxel 1H MRS with respiratory monitoring for the

study of the suprarenal gland. Even with the encouraging

initial results, the problems in utilizing the single voxel lo-

calization technique remained, be it in the inability to ac-

cess the spatial distribution of the observed metabolic

changes; in the difficult comparison of metabolic levels be-

tween two different regions; in the positioning of the vol-

ume to be scanned with basis on the MR images where it

may be difficult to determine the region of interest; or the

limitation to study relatively large masses (8–27 cm3) and

short TE(11).

With the objective of overcoming such limitations, the

multiple 2D volume was initially utilized, as a way to select

the region of spectroscopic interest, with activation of two

gradients, from the suprarenal gland sagittal plane(11). The

acquisition of multiple volumes provides spectral informa-

tion on the spatial extent and metabolic heterogeneity of the

cancer, without the need for knowing its exact location(25).

In the present study, it was necessary to make some

modifications in the acquisition phases and in the post-pro-

cessing of the adrenal 1H MRS protocol, as compared with

the early phases of the project(10). In addition to the two-di-

mensional character of the spectral pulse sequence, the non-

angulation of the multi-voxel, the improvement in the ad-

justment of the field of view to the mass/nodule and the sig-

nal-to-noise ratio balance, with adjustment of the number of

acquisitions, were items exhaustively worked upon, causing
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and important impact on this optimization. No other relevant

changes were needed in relation to the physical parameters

of the spectral sequence applied in the previous study.

The acquisition of three sagittal planes (free breathing,

maximum inspiration and maximum expiration) was main-

tained in order to determine the most probable lesion loca-

tion, restricting shimming to this region. Such a method is

not perfect, but it compensates for the lack of respiratory

monitoring in the multi-voxel sequence.

As regards post-processing, the protocol changes pro-

gressed along with the new applications developed by Si-

emens Medical Systems, which have allowed for an improved

analysis of the spectroscopic data. The post-processing with

different scales with greater amplitude (0.5 to 8.5 ppm) to a

smaller amplitude (0.5 to 4.7 ppm) allowed for better ad-

justment of the baseline, taking into consideration the water

peak with the other metabolites in the automatic and manual

determination of the spectral phase and frequency. Such fac-

tors have allowed for a faster and more reliable determina-

tion of the eligible voxel.

Even with the positive impact from such changes, the

mathematical criteria determined in the authors’ previous

study continued to be satisfactory in the determination of

adenomas, carcinomas, pheochromocytomas and metastases.

Thus, the present study sample demonstrated a sensitiv-

ity of 100%, specificity of 98.2%, PPV of 83.3% and accu-

racy of 98.4% for the Cho/Cr ratio ≥ 1.20 in the differentia-

tion of carcinomas and metastases from adenomas and pheo-

chromocytomas. In the previous study, the authors had ob-

served, respectively, 92%, 96%, 86% and 95%. On the other

hand, for the ratio 4.0–4.3 ppm/Cr ≥ 1.50, sensitivity was

92.3%, specificity 96.9%, PPV 89.3% and accuracy 95.93%

in the differentiation of carcinomas and pheochromocyto-

mas from adenomas and metastases, as compared with 87%,

98%, 98%, and 95%, respectively, observed in the previous

study.

In the present study, the authors observed the frequent

presence of Lac peak. Thus, similarly to other metabolites,

they decided to include such a metabolite in their analysis

as ratio with Cr.

A statistically significant difference was as the Lac/Cr

ratio was applied in the comparison of the pheochromocy-

toma group with the adenoma and carcinoma groups. The

ROC curve demonstrated that such metabolic ratio, when

above –7.449, has a sensitivity of 90.9%, specificity of 77.8%,

PPV of 83.35%, and accuracy of 85.01% in the differentia-

tion between carcinomas and pheochromocytomas, one of

the most significant difficulties in relation to the previous

study. Therefore, by adding this new ratio, the diagnosis and

differentiation capability was increased.

CONCLUSION

With the presently described 1H MRS sequence, it was

possible to establish an effective protocol for the differentia-

tion of nodules/masses with > 1.0 cm in diameter in the

adrenal glands. As the present results are compared with the

previous study results, there was a gain in sensitivity (from

92% to 100%) and in specificity (from 96% to 98.2%) for

the differentiation of carcinomas and metastases from ad-

enomas and pheochromocytomas as the Cho/Cr ≥ 1.20 ra-

tio is applied. However, despite the significant gain in the

sensitivity of the 4.0–4.3 ppm/Cr ? 1.50 ratio (from 87% to

92.3%) in the differentiation of carcinomas and pheochro-

mocytomas from adenomas and metastases, there was a de-

crease in specificity (from 98% to 96.9%). On the other hand,

the Lac/Cr ratio demonstrated sensitivity of 90.9% and speci-

ficity of 77.8% in the differentiation between carcinomas and

adenomas from pheochromocytomas. It is expected that the

application of more powerful magnetic fields (3T) will in-

crease the spectral resolution, allowing for a significant

improvement in the performance of the present protocol.
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