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GRID COMPUTING IN THE OPTIMIZATION OF CONTENT-BASED

MEDICAL IMAGES RETRIEVAL*

Marcelo Costa Oliveira1, Paulo Mazzoncini de Azevedo-Marques2, Walfredo da Costa Cirne Filho3

OBJECTIVE: To utilize the grid computing technology to enable the utilization of a similarity measurement
algorithm for content-based medical image retrieval. MATERIALS AND METHODS: The content-based im-
ages retrieval technique is comprised of two sequential steps: texture analysis and similarity measurement
algorithm. These steps have been adopted for head and knee images for evaluation of accuracy in the re-
trieval of images of a single plane and acquisition sequence in a databank with 2,400 medical images. Ini-
tially, texture analysis was utilized as a pre-selection resource to obtain a set of the 1,000 most similar images
as compared with a reference image selected by a clinician. Then, these 1,000 images were processed uti-
lizing a similarity measurement algorithm on a computational grid. RESULTS: The texture analysis has dem-
onstrated low accuracy for sagittal knee images (0.54) and axial head images (0.40). Nevertheless, this
technique has shown effectiveness as a filter, pre-selecting images to be evaluated by the similarity mea-
surement algorithm. Content-based images retrieval with similarity measurement algorithm applied on these
pre-selected images has demonstrated satisfactory accuracy — 0.95 for sagittal knee images, and 0.92 for
axial head images. The high computational cost of the similarity measurement algorithm was balanced by
the utilization of grid computing. CONCLUSION: The approach combining texture analysis and similarity
measurement algorithm for content-based images retrieval resulted in an accuracy of > 90%. Grid comput-
ing has shown to be essential for the utilization of similarity measurement algorithm in the content-based
images retrieval that otherwise would be limited to supercomputers.
Keywords: Content-based image retrieval; Texture analysis; Image registration; Grid computing.

Grades computacionais na otimização da recuperação de imagens médicas baseada em conteúdo.

OBJETIVO: Utilizar o poder de processamento da tecnologia de grades computacionais para viabilizar a utiliza-
ção do algoritmo de medida de similaridade na recuperação de imagens baseada em conteúdo. MATERIAIS
E MÉTODOS: A técnica de recuperação de imagens baseada em conteúdo é composta de duas etapas se-
qüenciais: análise de textura e algoritmo de medida de similaridade. Estas são aplicadas em imagens de joelho
e cabeça, nas quais se avaliaram a eficiência em recuperar imagens do mesmo plano e a seqüência de aqui-
sição em um banco de 2.400 imagens médicas para testar a capacidade de recuperação de imagens baseada
em conteúdo. A análise de textura foi utilizada inicialmente para pré-selecionar as 1.000 imagens mais se-
melhantes a uma imagem de referência escolhida por um clínico. Essas 1.000 imagens foram processadas
utilizando-se o algoritmo de medida de similaridade na grade computacional. RESULTADOS: A precisão
encontrada na classificação por análise de textura foi de 0,54 para imagens sagitais de joelho e de 0,40 para
imagens axiais de cabeça. A análise de textura foi útil como filtragem, pré-selecionando imagens a serem
avaliadas pelo algoritmo de medida de similaridade. A recuperação de imagens baseada em conteúdo utili-
zando o algoritmo de medida de similaridade aplicado nas imagens pré-selecionadas por análise de textura
resultou em precisão de 0,95 para as imagens sagitais de joelho e de 0,92 para as imagens axiais de cabeça.
O alto custo computacional do algoritmo de medida de similaridade foi amortizado pela grade computacio-
nal. CONCLUSÃO: A utilização da abordagem mista das técnicas de análise de textura e algoritmo de medida
de similaridade no processo de recuperação de imagens baseada em conteúdo resultou em eficiência acima
de 90%. A grade computacional é indispensável para utilização do algoritmo de medida de similaridade na
recuperação de imagens baseada em conteúdo, que de outra forma seria limitado a supercomputadores.
Unitermos: Recuperação de imagens baseada em conteúdo; Análise de textura; Registro de imagens; Gra-

des computacionais.
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regarding patients in consequence of the
increasing importance and utilization of
imaging diagnosis. There is a need for in-
telligent and safe indexation and storage of
a huge amount of data, considering that
they play an essential role in clinical diag-
nosis(1,2).

The increasing use of computer-aided
diagnosis (CAD) applications is related to
the rapid development of medical algo-
rithms. The CAD objective is to improve
the diagnostic accuracy, as well as the con-
sistency in diagnostic images interpretation
by means of a diagnostic response sug-
gested by a computer(3). However, some
recognized CAD applications have not
been utilized in the clinical routine yet be-
cause of their high computational cost, lim-
iting their utilization to those centers that
have high capacity computers(4).

Difficulties in applying these CAD al-
gorithms in the clinical routine and the
current limits on images storage, process-
ing, search and retrieval in large data banks
have led companies and research institu-
tions to find new solutions for the accom-
plishment of these tasks(5,6).

Grid computing

The grid computing (GC) technology is
the most recent and promising tool in the
field of distributed computing. In summary,
distributed computing consists of a collec-
tion of independent computers presenting
to the user as a single and consistent sys-
tem. This technology allows integration
between remotely distributed and con-
nected by means of long distance networks.
With this integration capacity, a virtual or
cooperative computing system is created to
resolve problems regarding mass data stor-
age and access, as well as regarding appli-
cations running with high computational
cost(6,7).

The GC technology offers a single en-
vironment for data sharing, storage and
processing. Additionally, it allows the
medical community to utilize a single dis-
tributed database capable of providing re-
sources, data and knowledge sharing.
These capabilities allow a greater interac-
tion among medical clinics, offering new
opportunities for small clinics and research
laboratories with poor computational re-
sources(7).

Besides, GC offers a flexible, scalable
and less vulnerable infrastructure, and,
therefore more reliable and capable of guar-
anteeing a safe access to any installed ap-
plication. Differently from distributed com-
puting and the methodology of groups of
terminals or workstations connected to a
server or group of servers (clusters technol-
ogy), the GC resources present administra-
tive autonomy and system heterogeneity.
These two features allow a higher scala-
bility and robustness to applications. How-
ever, these same features require that the
computational grid components are com-
pliant with standards aiming at an open
scalability and sharing of computational
resources(8).

Foster & Kesselman(9) have presented a
proposal of GC architecture and compo-
nents. The grid formal architecture com-
prises four layers (Figure 1). The construc-
tion layer is the lowest level of the struc-
ture and represents the physical resources
and devices that users want to share and
access (computers, network, file systems,
catalogs, softwares and digital instru-
ments). Just above the construction layer,
is the resources and connectivity layer, re-
sponsible for communication and authen-
tication required for resources exchange,
user validation, monitoring and control
over resources sharing. The third layer, or
cooperation layer, holds the protocols and
performs the services responsible for the

resources exchange (resources discovery
and allocation, monitoring and diagnosis of
services functionality, data replication, and
policies regulating users’ privileges for
accessing the grid resources). The user ap-
plication layer is at the top of the structure
and is responsible for invoking all the other
layers.

There is a great number of GC-related
projects described in the literature (for ex-
ample: Globus(10), Legion(11), Condor(12)

and OurGrid(13)), based on different tech-
nologies, and aimed at determined areas
and purposes like applications for data stor-
age and processing, Web portals and infra-
structure services for interinstitutional col-
laboration(14,15).

The baseline utilization of GC by the
user is accomplished by means of a soft-
ware interface that allows the user to com-
municate with the data processing center of
the computational grid known as broker.
The broker can find the resources required
for the tasks execution. After finishing the
task execution, the broker returns the ap-
plication result to the user(16). Figure 2 dem-
onstrates the baseline functioning of the
OurGrid project.

Content-based medical images retrieval

Among the several CAD techniques,
content-based images retrieval (CBIR) are
the systems that most benefit from the GC
technology due to their features and re-

Figure 1. Computational grids architecture.
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(pixels) for each gray-scale intensity. Gray-
scale distribution presents ambiguity
(where different images may generate the
same summation), and for this reason is not
effective for the whole CBIR; however,
considering its simplicity and low compu-
tational cost it can and should be utilized
as a initial filter for other more complex and
costly methods.

Texture-based features are related to the
quantification of image intensity variation
and scale. In the literature, one of the most
frequently utilized methods for extracting
texture attributes is the co-occurrence ma-
trix(24). Haralick et al.(26) have defined the
texture attributes that can be obtained from
the co-occurrence matrix with texture dis-
crimination purposes. Approximately 20
statistical functions are proposed in the lit-
erature for acquisition of information from
the co-occurrence matrix(27). Some of the
most significant functions producing a sat-
isfactory textures classification are: en-
tropy, inertia, energy, shade, inverse differ-
ence moment, promenance, correlation and
variance(27–33).

Shape-based image retrieval is one of
the most complex issues to be approached
by CBIR systems, considering the com-
plexity of the method for automatic seg-
mentation of medical images. After the
segmentation, the structures are described
by their shape characteristics, including

quirements: processing intensity and com-
plexity and great amount of stored im-
ages(17).

Through CBIR, and based on a refer-
ence image, it is possible to find similar
images included in one or several image
banks utilizing inherent attributes. In the
clinical decision-making process, CBIR
presents great advantages, and is capable of
retrieving images of a same modality, ana-
tomical region and with the same structural
alterations caused by certain diseases.
Therefore, CBIR has awakened the medi-
cal community interest because of its ca-
pacity to retrieve already diagnosed images
to compare with an image being studied,
allowing the specialist to confirm his/her
diagnostic hypothesis(18). Although part of
this information may be shown on the
medical images letterhead, this textual la-
beling may present a high rate of error, with
case reports of up to 16%(19). A great num-
ber of scientific papers emphasize the need
for adopting alternative methods of access-
ing data manually inserted into the medi-
cal images letterheads(20–23).

Besides the techniques of clinical deci-
sion-making support, research and teach-
ing benefit from CBIR systems. In educa-
tion, CBIR aids both teachers and students
in utilizing educational image banks and
visual analysis of results. Besides evalua-
tion based on diagnosis and anatomical
region, analysis of visually similar cases,
although with different diagnosis, result in
an improvement of the educational qual-
ity(24).

Content-based images retrieval is one of
the computational vision techniques more
intensely studied in the last tem years, and
is based on three classes of visual charac-
teristics: color, texture and shape(25). These
attributes allow the development of robust
computational tools capable of character-
izing images by their own contents, adding
advantages to the images identification
based only on textual descriptors that con-
stitute the traditional classification of medi-
cal images files(23).

The gray-scale distribution is the sim-
plest feature to be characterized. Character-
ization is performed by comparison be-
tween gray-scale histograms utilizing the
summation of absolute or quadratic differ-
ences on the number of image elements

Figure 2. The user enters the CG through the broker installed in his/her PC. The broker can find resources,

and request local or remote computers to accomplish user’s tasks. The peer is responsible for the man-

agement of the local network hardware for the interaction with remote machines.

information on rotation, translation and
scale(34).

Another CBIR technique described in
the literature is the images registration(5,17).
This technique calculates a rigid 2D coor-
dinates transformation including rotation,
translation and scale, searching the maxi-
mum matching between two images or
between two image volumes. The rigid
transformation is based on the minimiza-
tion of the quadratic error or sum of square
differences between the structures contour
utilizing similarity measurement algorithms
between two images intensities (35,36).

The present study presents a singular
approach to systems of content-based
medical images retrieval, utilizing texture
attributes and the computational power of
the recent GC technology applied to the
similarity measurement algorithm based on
the sum of square differences.

MATERIALS AND METHODS

The system developed in the present
study has utilized the GNU/Linux Debian
operational system and Java 1.5 program-
ming language, with the similarity mea-
surement algorithm as an implementation
of the Insight Toolkit software(37). Evalua-
tion was made in a heterogeneous images
bank with 2,400 MRI images of different
anatomical regions, sequences and acqui-
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sition planes, with gray levels ranging from
4,096 to 65,536.

The system comprises two CBIR mod-
ules. The first module utilizes second or-
der texture analysis parameters (co-occur-
rence matrix) to classify the most similar
images according to this technique. In the
second module, the similarity measurement
algorithm is applied on the images selected
in the first module. Because of the high
computational cost of the similarity mea-
surement algorithm, the second module is
processed on the OurGrid computational
grid that is a cooperative, open and free-
access network. OurGrid, currently, hooks
together approximately 500 machines.

The user/GC interface is performed by
means of MyGrid 3.2 (OurGrid; Campina
Grande, PB, Brazil) that is the OurGrid
broker, capable of selecting the computa-
tional resources to be utilized in the appli-
cation execution, besides releasing the user
from the GC complexity, so the user utilizes
de grid as if it was a single computer(13).

All of the database images have an as-
sociated characteristic vector obtained
from the gray levels co-occurrence matrix
and its attributes. The co-occurrence matrix
followed orientation at 0°, 45°, 90° and
135° and distances between images ele-
ments (pixels) = 1. Texture attributes uti-
lized were: energy, entropy, inverse differ-
ence moment, shadow, inertia, promenance,
correlation and variance. The utilization of
eight texture attributes and four angular
orientations resulted in a 32-dimension
characteristic vector.

The system offers a graphic interface
(Figure 3) allowing the specialist to select
a DICOM (digital imaging and communi-
cation in medicine) reference image at the
beginning of the first module. At the end
of the module, the images are classified
according the lower value of the Euclidean
distance between the characteristic vectors
of the reference image and the database
images.

The second module utilizes the 1,000
most similar images according to the first
module. This module also requires that the
specialist define the number of tasks for the
similarity measurement algorithm process-
ing e distribution on the GC. That is to say,
which is the application “granularity”. The
granularity is related to the amount of im-

ages to be processed by the similarity mea-
surement algorithm on each GC machine.
The similarity measurement algorithm uti-
lizes similar transformations and linear in-
terpolation aiming at the mapping of the
homologue points between two images.

RESULTS

The results of the present study origi-
nated from the selection of images of two
anatomical regions — knee and head — in
an images bank. The knee studies included
20 sagittal, T1-weighted images, and head
studies included 40 axial, T2-weighted
images. The experiments were repeated for
three times, with slices different from the
described studies. The images were consid-
ered as correct when the application re-
turned images from the same plane and
sequence of the reference images.

The first module classified the most
similar images according to texture at-
tributes. The mean processing time in the
first module was 2.3 minutes, and was ob-
tained by the calculation of the Euclidean
distance between the characteristic vector
of each of the 2,400 images, and the char-
acteristic vector of the reference image. The
algorithms were processed by the local
computer utilizing a 2.8 GHz Pentium 4
processor with 1 Gbyte memory.

Results were evaluated with “precision”
and “recall” parameters which are typically
utilized for evaluating systems of content-
based images retrieval and information re-

trieval. “Recall” means the ratio of relevant
images over the number of images re-
trieved in the query. On the other hand,
“precision” is the ratio of retrieved images
that are relevant for reference(38).

Figure 4 shows the results of the execu-
tion of the first module with mean values
of precision-recall curves of the Euclidean
distance between characteristic vectors of
the reference images in relation to the im-
ages of the database. This result allowed
the evaluation of the CBIR effectiveness
utilizing the texture in the classification of
the most similar images for the second
module. Although the mean precision ob-
tained in the experiments is 0.54 (sagittal
knee), and 0.40 (axial head), it is sufficient
for filtering the images to be submitted to
the second module. In the second module,
the images are processed with the similar-
ity measurement algorithm on the compu-
tational grid. CBIR with the similarity
measurement algorithm resulted in a satis-
factory precision for both anatomical re-
gions — 0.95 (sagittal knee) and 0.92 (axial
head) —, according to the mean precision-
recall curves between the reference images
and those classified by the first module
(Figure 5).

Figure 6 shows the classification of the
most similar images after the application
execution. For space reasons, only nine of
the most similar images are shown.

The high computational cost of the
similarity measurement algorithm was bal-
anced by the utilization of the computation

Figure 3. Graphic interface for user-system interaction.
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grid of the OurGrid system. On average, the
processing time of the similarity measure-
ment algorithm applied to the experiments
utilizing 50 processor of the grid was re-
duced by 116.97 minutes for knee images
and 95.15 minutes for head images in re-
lation to processing times obtained in the
local computer (Figure 7).

In the present study, the application was
divided into 20 tasks comprised of 50 im-
ages each. Images were compressed before
being sent to the computational grid, and
the mean size of the files with 50 images

was 4 Mbytes. Images were sent to the
computational grid with a single identifi-
cation file specifying the number of the
image and the respective task.

On average, the compressed images
were sent to the computational grid ma-
chines is 22.2 seconds, and the mean pro-
cessing time for the 50 images by each
computer of the grid was 11.45 seconds.
The images send-time was short because
the greatest part of the tasks was executed
on computers connected to the local net-
work.

Also, OurGrid allowed that the librar-
ies required for the application execution
were stored in remote computers avoiding
the necessity of re-sending data.

The mean time for experiments has also
been analyzed, changing the application
granularity among 10, 20, and 50 images/
task (Figure 8). The use of the smallest
grain, i.e., 50 images /task, implied a greater
total amount of images/task. So, a higher
number of computers of the computational
grid were requested because of the increase
in the quantity of tasks to be processed.

Figure 6. Application result utilizing sagittal knee image and the most similar images acquired with the

application.

The necessity of allocating 50 machines
for executing the application implied the
distribution of tasks for being processed
out of the local network. So, the total ap-
plication time was affected by the time of
data transmission to remote computers.

Nevertheless, decomposing the applica-
tion into larger tasks (tem tasks in total),
i.e., larger grain, implied the requisition of
less computers and transmission of greater
files with higher processing time/machine.
Therefore, a fixed and intermediate num-
ber of 20 tasks were adopted.

DISCUSSION

The CG technology has shown to be a
promising tool in the processing and stor-
age of great data volumes. However, more
benefits should be expected, according to
Liu et al.(7), who have utilized the GC ar-
chitecture to make medical images backup
copies in several PACS (picture archiving
and communication system).

Figure 5. Curves regarding the application efficacy in content-based im-

ages retrieval.

Figure 4. Curves regarding the execution of the first module utilized for images

filtering.

Sagittal knee  Axial head Sagittal knee   Axial head

Reference
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The present study has adopted a mixed
approach of CBIR techniques to classify
similar images of different planes and ana-
tomical regions utilizing the high CG pro-
cessing capacity. The system has utilized
CBIR techniques based on texture analy-
sis and similarity measurement algorithm.

The texture analysis approximates the
human visual perception and has been uti-
lized in many systems as an aid to the clini-
cal diagnosis(39,40). The mean texture analy-
sis accuracy — 0.54 for knee images, and
0.40 for head images -, despite being rela-
tively low, was effective as an initial filter
for the second module. A possible solution
to increase the efficiency of this filtering
would be the development of methods to
detect motion artifacts, since texture infor-
mation may be missed when rotation, trans-
lation and scaling are involved in the im-
ages processing(29).

The utilization of the similarity mea-
surement algorithm of the sum of the
square differences applied to the second
module presented a quite satisfactory mean
accuracy — 0.95 for knee, and 0.92 for
head. The algorithm could retrieve similar
images of different anatomical regions and
planes. The majority of studies in the litera-
ture are restricted to a determined anatomi-
cal region, modality or diagnostic proce-
dure, only utilizing characteristic vec-
tors(41). However, because of their high
computational cost, the utilization of simi-
larity measurement algorithms executed in
a single computer becomes unfeasible in

computer-aided diagnosis. The GC tech-
nology enables the utilization of the simi-
larity measurement technique because of
the capability of parallel data processing in
the several computers connected to the
computational grid.

Although the computational grid uti-
lized in the present study is constituted by
approximately 500 computers spread over
more than 20 locations, the ten- and twenty-
task experiments were processed in the lo-
cal network machines without affecting the
application execution time. However, the
50-task experiments required processing
out of the local network, so they were af-
fected by the high costs of data transmis-
sion. In these cases, the cost-benefit ratio
between processing time and data-trans-
mission should be evaluated.

The utilization of GC in medical appli-
cations is still at its beginning; however this
is a promising technology and significant
developments in IT applied to the health
care field can be expected in the near fu-
ture.

Aiming at improving the results of the
present study, two new components are
presently in development: similarity mea-
surement based on cross-correlation, and
automatic segmentation of brain structures.
The cross-correlation algorithm will allow
the search in different modalities to mini-
mize a limitation of the sum of square dif-
ferences. Another limitation of this algo-
rithm is the high sensitivity to small
amounts of pixels with great differences in

intensity between two images, like in cases
of contrast injection(35). The automatic seg-
mentation algorithm will restrict the image
retrieval to determined structures, allowing
more specific queries than those performed
in comparison with complete images. An
integrate utilization of different methods
could result in a more accurate differentia-
tion between images(42).
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